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This study investigates the dynamics of a single-degree-of-freedom (SDOF) wire in a
winding machine. This system has piecewise-linear stiffness and is subjected to a forcing
excitation due to imbalance and a parametric excitation due to tension. The frequencies
of both parametric and forcing excitations are not equal or do not have a ratio of two
simple integers. Using the fourth order Runge–Kutta method and introducing a J-integral,
this strongly non-linear system can be estimated for various parameters. Then, the
mode-locking motions, main resonant intervals, and subharmonic modes can be found.
Also, all possible combined subharmonics and superharmonic motions and routes to chaos
are observed by J-bifurcation illustrations with the assistance of Poincaré maps, phase
portraits, response waveforms, frequency spectra and Lyapunov exponents. Thus, the
physical illustrations of such a system can provide stabilization by appropriate design
parameters.
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1. INTRODUCTION

The strongly non-linear dynamics of piecewise-linear mechanical systems is an important
practical problem, because such systems are commonly used in many engineering fields.
Piecewise-linear systems containing components with clearance are either designed and
assembled unavoidably, or due to wear, experience intermittent motion from contact with
a separation from other components, or connect through a backlash. These systems exhibit
phenomena such as multiple solution regimes, and superharmonic, subharmonic and
quasi-periodic and chaotic solutions.

The conventional methods for analyzing piecewise-linear systems which are
subjected to an harmonic force can be categorized into the following solution techniques.
(i) Padmanabhan and Singh [1] have adapted an analytical method of the parametric
continuation scheme, based on the shooting method. Although the occurrence of a
period-doubling bifurcation determined by the eigenvalues of period two was solved, the
periodic solutions were scarcely obtained. (ii) Choi and Noah [2, 3], Kim and Noah [4],
Lau and Zhang [5] and Narayanan and Sekar [6] used the harmonic balance method to
determine the coefficients of solutions directly or iteratively; however, these coefficients
corresponding to the synchronous or multiple forcing frequency do not seem to converge
easily to finite terms. Furthermore, the influence of initial conditions on steady state
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solutions was no longer unambiguous. Neither were these solutions identical to the ones
for the original equations of motion; consequently, the solutions were only approximate.
(iii) Mahfouz and Badrakhan [7, 8] used the numerical integration method to solve two
non-linear systems having only forcing excitations with harmonic frequency and obtained
harmonic, subharmonic and chaotic motions for various parameters. Oks et al. [9]
investigated the suppression phenomena of resonant oscillations in these strongly
non-linear SDOF systems with parametric and forcing frequencies. The resonance and
non-resonance regions were determined; however, the details of the periodic, subharmonic
and chaotic motions have not been observed.

This study investigates the dynamics of a winding machine with piecewise-linear
stiffness, which is an SDOF system subjected to a parametric excitation and a forcing
excitation with a non-multiple frequency ratio. This system is described by a second
order differential equation and solved by the fourth order Runge–Kutta method to
determine the stationary J-integral solutions for various parameters. J-integral bifurcation
can be analyzed by means of Poincaré maps, frequency spectra, response waveforms,
phase portraits and Lyapunov exponents to distinguish the jump phenomenon,
frequency-locking, routes to chaos and resonance/non-resonance due to initial conditions.

2. EQUATIONS OF MOTION

In a winding machine, one-mode oscillations of a stretched string, as shown in Figure 1,
can be governed by the equation [9]

m
d2y
dt2 + c

dy
dt

+ k1 (1− m2 sin (v2 t))y+F(y)= p sin (v1 t), (1)

in which the piecewise-linear restoring force F(y) is generated by a clearance o and is given
by

F(y)=60(k2 − k1) (y− o sgn y)
for =y =E o,
for =y =q o, k1 Q k2,

(2)

where m is the lump mass of a winding wire, c is the linear damping coefficient, k1 and
k2 are the wire stiffness and the restoring stiffness, respectively, v1 and v2 are the forcing
and the parametric frequencies, respectively, and p and m2 are the amplitudes of the forcing
and the parametric excitations, respectively. The parametric excitation is due to the tension

Figure 1. A model of a winding machine.
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T 1

System parameters for the figures

n1 n2 m1 m2 k g x(0) ẋ(0)

Figure 2 1·23 3·0 0·25 0·17 7·0 (a) 0·15 −1·8 0
(b) 0·1 −2·0 0
(c) 0·086 −1·8 0
(d) 0·07 0 0
(e) 0·07 −0·75 0

Figure 3 1·23 3·0 0·25 0·17 7·0 0·07 −0·75 0

Figure 4 1·23 3·0 0·25 0·17 7·0 0·06–0·20 −2·5–0·0 0
Step=0·0002 Step=0·05

Figure 5 1·23 3·0 0·1–0·5 0·18 7·0 1/15 −2·5–0·0 0
Step=0·001 Step=0·05

Figure 6 1·23 3·0 (a) 0·1 0·18 7·0 1/15 −1·2 0
(b) 0·163 −2·0 0
(c) 0·199 −1·4 0
(d) 0·204 −2·1 0
(e) 0·206 −2·0 0
(f) 0·136 −1·45 0
(g) 0·205 −1·65 0

Figure 7 1·23 3·0 (a) 0·349 0·18 7·0 1/15 −2·1 0
(b) 0·348 −0·9 0
(c) 0·375 −2·1 0
(d) 0·375 −2·45 0
(e) 0·298 −1·25 0

Figures 8 and 9 1·23 3·0 0·1–0·5 0·18 7·0 1/15 Resonant 0
Step=0·001 region

Figure 10 1·23 3·0 0·25 0·17 7·0 (a) 0·15 −2·5–2·5 −5–5
(b) 0·1 Step=0·05 Step=0·1
(c) 0·07

Figure 11 1·23 3·0 0·1–0·5 0·15 7·0 1/15 −2·5–0·0 0
Step=0·001 Step=0·05

Figure 12 1·23 3·0 0·145 0·15 7·0 1/15 −2·5–2·5 −5–5
Step=0·05 Step=0·1

of the string, and the forcing excitation is caused by the whirling motion of a winding roller
installed at the right end.

Substitution of the following non-dimensional variables,

x= y/o, t=v0 t, v0 =zk1 /m , m1 = p/(k1 o), n1 =v1 /v0,

n2 =v2 /v0, g= c/(mv0), k=(k2 − k1)/k1, (3)

into equations (1) and (2) gives

ẍ+ gẋ+(1− m2 sin (n2 t))x+ f(x)= m1 sin n1 t, (4)

where

f(x)=60k(x−sgn x)
for =x =E 1,
for =x =q 1,

(5)

and the superscript dot denotes differentiation with respect to t.
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Since this equation has a strong non-linear restoring force and the forcing frequency has
a non-multiple value via the parametric frequency, there has been no analytical method
of solution. Thus, the fourth order Runge–Kutta method is utilized, for various values of
system parameters within the following ranges:

1E kE 10, 0Q m2 E 0·5, 0·02E gE 0·2, 0Q m1 E 1, 0·5E n1 Q 2.

The initial conditions of the non-dimensional displacement are from −2·5 to 2·5, and the
non-dimensional velocity from −5·0 to 5·0 is considered. Values of these parameters with
respect to Figures 2–12 are listed in Table 1. The value N is chosen in the range 200–600

Figure 2a.
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Figure 2b.

for the time interval Dt=2p/(n1 N) in the numerical integration. The first forcing periods,
which have long terms, were not recorded in order to avoid transient solutions. Both the
frequency spectrum and the phase portrait are determined for 100 forcing periods.
Poincaré maps are obtained by sampling the stationary solutions over 200 points (x, ẋ)
for one forcing period (T=2p/n1).

3. FREQUENCY-LOCKING AND QUASI-PERIODIC MOTIONS

A winding wire system is characterized by two frequencies which belong to forcing and
parametric excitations. A type of quasi-periodic motion can occur, because this system has
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two different frequencies associated with it; that is, it can be analyzed with regard to two
independent periodic motions. The pattern of points on a Poincaré map looks like a
dependence on the numerical relationship between the two frequencies. If the ratio of the
two frequencies can be expressed as the ratio of two integers (that is, as a ‘‘rational
fraction’’), then the Poincaré section will consist of a finite number of points. This type
of motion is often called frequency-locked—or mode-locking or phase-locking—motion,
because one of the frequencies is locked, often over a finite control parameter range, as
a multiple integer of the other.

If the frequency ratio is irrational, the points on a Poincaré map eventually fill a
continuous curve in the Poincaré plane, and the motion is said to be quasi-periodic because

Figure 2c.
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Figure 2d.

the motion never exactly repeats itself. However, the motion is not chaotic; rather, it is
composed of two or more periodic components, the presence of which can be determined
by measuring the frequency spectrum of motion. In order to detect the difference between
quasi-periodic and chaotic motions, the Lyapunov exponents are calculated by using the
algorithm devised by Wolf et al. [10]. The calculated value of the most positive Lyapunov
exponent when the system has chaotic behavior is plotted as a function of the total average
time, measured in units of the forcing period. A winding wire system has parameters of
n1 =1·23, n2 =3, k=7, m1 =0·25, m2 =0·17 and g=0·07, with various initial conditions
governed by equations (4) and (5). In Figures 2(a)–2(e) are shown the response waveforms,
frequency spectra, phase portraits and Poincaré maps for selecting damping at g=0·15,
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0·1, 0·086 and 0·07 for this system, respectively. As the frequency ratio n2 /n1 =100/41, the
stationary responses of the resonant motion are a limit cycle around point (0, 0) and the
orbits enlarge monotonously as the damping coefficient g decreases. The non-resonant
motion is shown in Figure 2(d). These figures exhibit frequency-locking motions, which
can be observed by 41 Poincaré map points.

As the damping is reduced, the coupling between the two frequencies increases and
results in increasing numbers of frequency peaks, which spread throughout the frequency

Figure 2e.

Figure 2. Response waveforms (upper left), frequency spectra (upper right), phase portraits (middle left) and
Poincaré maps (middle right), and the extent of the long-term frequency spectra (bottom). (a) g=0·15 (P1);
(b) g=0·1 (P2); (c) g=0·086 (P4); (d) g=0·07 (P1); (e) g=0·07 (chaos).
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Figure 3. The Lyapunov exponent versus time from Figure 2(e).

spectrum. Figure 2(e) is for g=0·07 and x(0)=−0·75, with other identical parameters,
the frequency spectrum of which is random-like. The Lyapunov exponent is determined
as shown in Figure 3, where the occurrence of chaotic motion is illustrated.

The frequency components of a period n motion contain a combination of n1, n2, the
superharmonic n2, and the subharmonic combination of n2 and n1, when it is a
mode-locking motion. In the present cases, the parametric and forcing frequencies induce
combinations of resonances. The frequency spectrum diagrams in Figures 2(a)–(e) show
all of the peak frequencies, which can be described by

fp =(n1 n2 + n1)2 n2 Dvn (6)

where Dvn = =n2 −2n1 =/n, with n an integer, and n1, n2 =0, 1, 2, . . . .
Thus these motions are combinations of the n1th superharmonic components of n2, the

(n2 /n)th subharmonic components of n2 −2n1, and the harmonic components of n1. One
may denote these motions by period n or Pn, because of the corresponding number of peak
frequencies in each cluster.

4. BIFURCATION OF J-INTEGRAL

The probability density function and the r.m.s. response are appropriate methods for
the analysis of chaos, as shown in references [11, 12]. An effective integral of the response
waveforms have been verified as a method of determining whether or not a transient
solution leads to one or the other steady solutions [13]. This integral, monitored on the
computer, is utilized in this study as shown:

J=g
2p/n1

0

[ẋ(t)]2 dt. (7)

From a computer analysis with various initial conditions, the steady state solutions of
this integral can be obtained. The initial conditions play an important role in determining
the resonance or non-resonance, and the system shows multiple solutions. In real systems
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the actual disturbances cannot always be expressed in terms of the initial conditions. In
general, the calculation of the J-integral for various initial conditions gives the number
of values that can correspond to the number of frequencies about the stationary response.
The large amplitudes should be distinguished from those having small amplitudes, which
determine the occurrences of resonance or non-resonance. The bifurcation of the J-integral
is composed of two cascades for which the upper is resonant oscillation and the lower is
non-resonant oscillation.

In Figure 4 is shown the bifurcation of the J-integral versus the damping parameter for
the same system as in Figure 2. A period-doubling cascade leads to chaotic motions. For
the damping values g=0·15, 0·1 and 0·086 shown in Figures 2(a), 2(b) and 2(c),
respectively, the large J-integrals are period one, period two and period four motions.

In the range 0·1764Q gQ 0·2, only a small J-integral cascade can be obtained for all
initial conditions and this non-resonance is a period one motion. As the damping
coefficients g decrease, a jump phenomenon occurs at g=0·1764. For these damping values
the initial conditions determine which resonance or non-resonance appears. After a further
decrease in the damping parameter g, period two and period four motions occur at the
values of g=0·1276 and g=0·0882, respectively.

In another example, the winding wire system has parameters of n1 =1·23, n2 =3, k=7,
m2 =0·18 and g=1/15. The bifurcations of the J-integral versus the forcing amplitude m1,
having values from 0·1 to 0·5, are shown in Figure 5. The resonance due to a large
J-integral exists among the regions except from m1 =0·207 to 0·249; however,
non-resonance due to a small J-integral exists from m1 =0·1 to 0·425. When m1 is increased
from 0·1 to 0·207, the resonance cascade shows that the number of J values increases from
one, two, four and eight to larger numbers. Then the irregular motions occur during a very
narrow range of m1. In an inverse direction when m1 is decreasing from 0·5 to 0·349, the
resonance cascade shows that the numbers of J values change from one to two, and then

Figure 4. Bifurcation of the integral J (J–g); k=7, m2 =0·17, m1 =0·25, n1 =1·23.
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Figure 5. Bifurcation of the integral J (J–m1); k=7, m2 =0·18, g=1/15, n1 =1·23.

immediately to a large number, and the irregular motions occur between m1 =0·249 and
m1 =0·349.

Poincaré maps and frequency spectra for selected values of m1 =0·1, 0·163, 0·199, 0·204
and 0·206, respectively, for period one with large amplitude, period two, period four,
period eight, and period one with small amplitude motions, are shown in Figures 6(a)–6(e),
respectively. When m1 2 0·136, the map indicates irregular points, due to a period three
motion, as shown in Figure 6(f). This period-doubling route leads to chaos at m1 =0·205,
as shown in Figure 6(g).

When m1 decreases from 0·5 to 0·25, the resonance map exhibits period one and period
two with a large number of J-integrals. Suddenly, chaotic motion occurs, when m1 =0·349
to m1 =0·348, as shown in Figures 7(a) and 7(b). When m1 =0·375, in this case the three
motions P1 (small amplitude), P2 and chaos coexist. In Figures 7(c) and 7(d) are shown
the resonant motion for x(0)=−2·1 and x(0)=−2·45 respectively. For the forced
amplitude m1 =0·298 a narrow window of period seven motion appears. Since the
frequency ratio n2 /n1 =100/41, the Poincaré section of this mode-locking motion has 287
(41×7) points, as shown in Figure 7(e).

The variation of the largest Lyapunov exponent versus m1 for a 200 000 forcing period
is illustrated in Figure 8. The occurrence of positive values between 0·249Q m1 Q 0·349,
m1 2 0·205 and m1 2 0·375 indicates that chaotic motions exist. Within this chaotic window,
a narrow periodic window appears. Through signs of Lyapunov exponents [14] ranging
from (0, −, −) to (+, 0, −), the large limit cycle solutions undergo a period-doubling
bifurcation. Then, the resulting limit cycle undergoes Hopf bifurcation, resulting in a
cascade period-doubling, and eventually breaking down into chaos. However, the periodic
behavior is interrupted by bursts of chaotic behavior, which can be called period-doubling
intermittency.

In the case of some parameters, by picking up J-integral, one can plot J versus
the parameter, so that the diagram may appear similar to the bifurcation diagram
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Figure 6a-d.
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Figure 6e-g.

Figure 6. Poincaré maps (left) and frequency spectra (right). (a) m1 =0·1 (P1); (b) m1 =0·163 (P2);
(c) m1 =0·199 (P4); (d) m1 =0·204 (P8); (e) m1 =0·206 (P1); (f) m1 =0·136 (P3); (g) m1 =0·205 (chaos).

for the logistic map. This means that when the non-multiple frequency ratio system with
period one response in the Poincaré section has 41 points, nevertheless the unique
J-integral is collected by varying initial conditions. As long as J-integral is versus the
parameter to be plotted, the response can be shown exactly.

The bifurcation of displacement versus the forcing amplitude for this winding wire
system with the same parameters is shown in Figure 9, in which the periodic, quasi-periodic
and chaotic motions cannot be distinguished. When a system has two frequencies with a
non-multiple ratio in the Poincaré section, it may consist of a finite number of points. For
systems determined by initial conditions, both the solutions of the displacement and the
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Figure 7a-d.
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Figure 7e.

Figure 7. Poincaré maps (left) and frequency spectra (right). (a) m1 =0·349 (P2); (b) m1 =0·348 (chaos); (c)
m1 =0·375, x(0)=−2·1 (P2); (d) m1 =0·375, x(0)=−2·45 (chaos); (e) m1 =0·298 (P7).

Poincaré maps are no longer unambiguous. Thus, the bifurcation of displacement cannot
give a distinct illustration of these complex oscillations.

5. STROBOSCOPE PHASE PLANE ANALYSIS

With the consideration of the J-integral, the numerical integration of this winding wire
system with various initial conditions can be determined. When a transient solution of the
J-integral leads to a steady state response, the system has multiple solution regions which
are sensitive to the initial conditions. The large J-integrals due to resonant oscillations and
the small J-integrals due to non-resonant oscillations can be obtained. For a system with
various initial conditions, a number of J-integrals on the resonance cascade corresponding
to period n motions can be obtained.

The resonance and non-resonance regions are determined by the two cascades of
J-integrals for the domain of initial conditions of a system with specific parameters. The
computational grid is divided by 101×101 for the initial conditions of x(0)=−2·5 to
2·5 and ẋ(0)=−5 to 5. For k=7, m2 =0·17, m1 =0·25 and n1 =1·23, the phase
trajectories for damping values of g=0·15, 0·1 and 0·07 are shown in Figures 10(a)–10(c).
In these figures the non-resonance regions are indicated by a dot, and the resonance
regions, divided by a separatrix, have no sign. It can be noticed that in the vicinity of
x(0)= ẋ(0)=0 there are small J-integrals of period one motion in all cases, and that
resonance regions are unsymmetric with respect to the axis x(0)=0 or the axis line
ẋ(0)=0. Also, these figures show that the resonant region increases as the damping
coefficient decreases. It is also desirable to determine the changes in the phase trajectory
for the variations in other parameters to clarify the existence of the resonance and the
non-resonance regions. In Figure 11 is shown the J-integral versus the forcing amplitude
m1, in which the period-doubling cascades lead to chaotic motions from both directions
of decreasing and increasing m1. Quasi-periodic and chaotic motions exist within a range
of 0·218Q m1 Q 0·320. For a narrow range around m1 =0·145 irregular points occur; all
possible motions contain period one motion due to resonance (large J), non-resonance
(small J) and period three motion. The corresponding initial conditions can be
separated/demarcated into three regions, as shown in Figure 12, denoted by blank space,
dots and symbols ‘w’. The regions of period three exist at the boundaries of both regions
of resonance and non-resonance.
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Figure 8. Lyapunov exponents versus m1 from Figure 5; k=7, m2 =0·18, g=1/15, n1 =1·23.

6. CONCLUSIONS

The oscillations of a strongly non-linear winding wire system with two harmonic
frequencies of forcing and parametric excitations have been investigated. The J-integral
is utilized to determine the bifurcations of resonance and non-resonance. Period-doubling

Figure 9. Bifurcation of the displacement (x–m1) from Figure 5.
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Figure 10. Resonance (blank) and non-resonance (dotted) regions from Figure 4. (a) g=0·15; (b) g=0·1;
(c) g=0·07.
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Figure 11. Bifurcation of the integral J (J–m1); k=7, m2 =0·15, g=1/15, n1 =1·23.

and period-doubling intermittency routes to chaos have been obtained as some parameters
of this system are changed.

The bifurcation of this integral exhibits a jump phenomenon in which small and large
J-integrals may occur. Moreover, one may distinguish components of the resonant or
non-resonant motion by the number of J-integrals with the assistance of response

Figure 12. Resonance regions (w, P3; P1, blank) and non-resonance regions (dotted) from Figure 11 as
m1 =0·145.



-     491

waveforms, frequency spectra, phase portraits, Poincaré maps and Lyapunov exponents.
For various parameters of this piecewise-linear system, jump phenomena, subharmonics
of various orders, frequency-locked period n motion, period-doubling and period-doubling
intermittency bifurcations to chaos can be observed. Also, this study established the
domains of the initial conditions which lead to different stationary conditions, including
resonance and non-resonance.
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APPENDIX: NOMENCLATURE

c damping coefficient
e eccentricity
fp frequency spectrum of the peak frequencies
J = f2p/n1

0 [ẋ(t)]2 dt, integral monitored
k =(k2 − k1)/k1, non-dimensional stiffness
k1 winding stiffness
k2 suppression stiffness
m lump mass of a winding wire
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n, n1, n2 integers
p amplitude of forcing excitation
Pn period n motion with nth order subharmonic frequencies
t time
T =2p/n1, forcing period
x = y/o, non-dimensional displacement
y lateral displacement of SDOF wire
g = c/(mv0), non-dimensional damping coefficient
Dvn = =n2 −2n1 =/n
o clearance
m1 = p/(k1 o), non-dimensional amplitude of forcing excitation
m2 non-dimensional amplitude of parametric excitation
n1 =v1 /v0, non-dimensional forcing frequency
n2 =v2 /v0, non-dimensional parametric frequency
t =v0 t, non-dimensional time
v0 =zk1 /m , fundamental natural frequency of the linearized wire system
v1 forcing frequency
v2 parametric frequency


